Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Guo-Qing Jiang, ${ }^{\text {a,b }}$ Yi-Zhi Li, ${ }^{\text {a }}$ Su-Na Wang, ${ }^{a}$ Fei-Fei Li, ${ }^{\text {a }}$ Zheng-Jiang Xu ${ }^{\text {a }}$ and Jun-Feng Baia*

${ }^{\text {a Coordination Chemistry Institute, State Key }}$ Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Chemical Engineering, Nantong University, Nantong 226003, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.053$
$w R$ factor $=0.114$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetra- μ-phenoxyacetato-bis[(acetonitrile)-copper(II)](Cu-Cu)

The title centrosymmetric compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{4}\right.$ $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}$], is a carboxylate-bridged dinuclear $\mathrm{Cu}^{\mathrm{II}}$ complex with four phenoxyacetate and two acetonitrile molecules as ligands. Each of the four phenoxyacetate anions straddles the pair of Cu atoms, the $\mathrm{Cu}-\mathrm{Cu}$ distance being 2.6618 (10) \AA. A weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction connects the dinuclear $\mathrm{Cu}^{\mathrm{II}}$ units into a one-dimensional chain.

Comment

Since the structure of copper(II) acetate monohydrate was reported by van Niekerk \& Shoening (1953), interest has focused on understanding $\mathrm{Cu}-\mathrm{Cu}$ interactions in dinuclear $\mathrm{Cu}^{\mathrm{II}}$ carboxylates and their magnetic aspects (Hatfield \& Whyman, 1969; Herring et al., 1971). A search of the Cambridge Structural Database (Version 5.24; Allen, 2002) for $\mathrm{Cu}^{\text {II }}$ complexes with phenoxyacetates as ligands yielded five hits. Here, the title compound, (I), a novel dinuclear $\mathrm{Cu}^{\text {II }}$ complex with acetonitrile as co-ligands, is reported.

(I)

Complex (I) exists as a centrosymmetric dinuclear unit, with four bidentate phenoxyacetate anions bridging the pair of $\mathrm{Cu}^{\mathrm{II}}$ atoms (Fig. 1). The $\mathrm{Cu}-\mathrm{Cu}$ distance is 2.6618 (10) \AA. Bond

Figure 1
The structure of (I), with displacement ellipsoids drawn at the 30\% probability level. H atoms have been omitted for clarity. (Symmetry code for unlabelled atoms: $\frac{3}{2}-x, \frac{1}{2}-y,-z$.)

Received 23 June 2005
Accepted 4 July 2005
Online 9 July 2005

Figure 2
A packing diagram for (I), showing chain formation along the b axis [symmetry code: (i) $x,-1+y, z$]. H atoms other than $\mathrm{H} 15 B$ have been omitted.
distances and angles involving the $\mathrm{Cu}^{\mathrm{II}}$ atoms are listed in Table 1. The four O atoms from the two opposing carboxylate anions form a plane, and the $\mathrm{Cu}-\mathrm{O}$ distances range from 1.946 (3) to 1.965 (3) \AA [average 1.957 (3) \AA]. In addition, the N atoms from acetonitrile molecules bind to the $\mathrm{Cu}^{\mathrm{II}}$ atoms nearly in the direction of the $\mathrm{Cu}-\mathrm{Cu}$ vector in the apical position, to complete a square-pyramidal coordination environment for the $\mathrm{Cu}^{\text {II }}$ atom. The $\mathrm{Cu}-\mathrm{N}$ distance is 2.188 (3) \AA.

In the crystal structure, a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (Jeffrey, 1997; Ni et al., 2003; Li et al., 2003) plays an important role. The $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction between the methylene group of the phenoxyacetate ligand and the cyano group of the acetonitrile ligand (Table 2) connects adjacent $\mathrm{Cu}^{\mathrm{II}}$ complexes to form a one-dimensional chain along the b axis (Fig. 2).

Experimental

$\left[\mathrm{Fe}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{OPh}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{NO}_{3}\right)$ was synthesized according to the literature method of Yang et al. (2004). $\left[\mathrm{Fe}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{OPh}\right)_{6}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{NO}_{3}\right) \quad(0.241 \mathrm{~g}, 0.2 \mathrm{mmol})$ was dissolved in acetonitrile $(10 \mathrm{ml})$ with stirring and then $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.047 \mathrm{~g}, 0.2 \mathrm{mmol})$ was added. After 30 min , the title complex, (I), formed and was filtered off. Single crystals of (I) suitable for X-ray analysis were grown from the filtrate after one week. The compound obtained was not that expected from the reaction.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]$
$M_{r}=813.73$
Monoclinic, $C 2 / c$
$a=19.064(4) \AA$
$b=7.6978(16) \AA$
$c=24.864(5) \AA$
$\beta=98.261(4)^{\circ}$
$V=3611.0(13) \AA^{\circ}$
$Z=4$

$$
D_{x}=1.497 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 935 reflections
$\theta=2.4-25.6^{\circ}$
$\mu=1.24 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.23 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-
3544 independent reflections
2539 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-22 \rightarrow 23$
$k=-9 \rightarrow 9$
$l=-24 \rightarrow 30$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.05 P)^{2}\right. \\
&\quad+1.55 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.53 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$1.946(3)$	$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.965(3)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.956(3)$	$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.6618(10)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$1.961(3)$		
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	$89.99(12)$	$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1$	$94.21(12)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 4$	$167.49(10)$	$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$97.89(11)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$87.85(11)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$82.72(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$167.03(11)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$81.34(8)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$90.7(12)$	$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$84.78(8)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$98.30(11)$	$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$85.71(8)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$95.07(11)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{i}$	$176.28(9)$

Symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}-y,-z$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centre of gravity of the cyano group.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 15-\mathrm{H} 15 B \cdots C g 1^{\mathrm{ii}}$	0.97	2.87	3.61	134

Symmetry code: (ii) $x, y-1, z$.

All H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

This work was supported by the Talent Development Foundation of Nanjing University, the Measurement Foundation of Nanjing University and the National Natural Science Foundation of China (grant No. 20301010).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2000). SMART (Version 5.0), SAINT-Plus (Version 6), SHELXTL (Version 6.1) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Hatfield, W. E. \& Whyman, R. (1969). Transition Met. Chem. 5, 47-171, and references therein.
Herring, F. G., Landa, B., Thompson, R. C. \& Schwerd Tfeger, C. F. (1971). J. Chem. Soc. A, pp. 528-535.

metal-organic papers

Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.
Li, Y.-Z., Liu, W.-W., Li, Y.-J., Pan, G.-J. \& Hu, H.-W. (2003). Acta Cryst. C59, o611-o612.
Ni, J., Li, Y.-Z., Qi, W,-B., Liu, Y.-J., Chen, H.-L. \& Wang, Z.-L. (2003). Acta Cryst. C59, o470-o472.

Niekerk, J. N. van \& Shoening, F. R. L. (1953). Acta Cryst. 6, 227-232.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yang, Y.-H., Li, Y.-Z., Wei, J.-C., You, X.-Z., Wang, T.-W. \& Bai, J.-F. (2004). Chin. J. Inorg. Chem. 20, 683-687.

